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Abstract

We extend the approach used to treat quasi-elastic inclusive electron-
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1 Introduction

The term "EMC-effect” refers to the observation that the cross sections for
deep inelastic lepton-nucleus scattering (DIS) differ significantly from the
sum of the nucleonic DIS cross sections. At 0.3 < z < 0.8, where z is the
Bjorken scaling variable, the nuclear cross section is reduced by up to 20%,
for 0.1 < z < 0.3 a small enhancement is observed, and for z < 0.05 a
reduction by up to 30% is found.

A very large number of publications have presented calculations to explain
these observations. For recent reviews we refer the reader to [1, 2. Here we
cannot do justice to this large body of work, and can only very summarily List
the main results. For 0.3 < z < 0.8 the main effect could be due to nucleon
binding and Fermi motion; however, most calculations still have difficulties
to explain the size of the "dip” at z ~ 0.7, and the inclusion of binding at the
parton level is not without ambiguities. While early calculations occasionally
got close to reproducing the "dip”, later calculations which included the
so called flux-factor (see below) and realistic spectral functions could not
reproduce the data. For 0.1 < z < 0.3 the contribution of excess pions
in nuclei, related to the pion-exchange nature of the long-range nucleon-
nucleon force, is considered to be mainly responsible. Several calculations
gave contributions of the size as required by the data. Difficulties originated
from the fact that this pion excess could not yet be identified in Drell-Yan
processes (p+ A — p* + ;) and appeared not to show up in the expected
enhancement of the spin-longitudinal response measured in (p,n) reactions
on nuclei. However, more recent analysis of the (p,n) reaction data [3] does
not contradict the pion excess hypothesis and the assumptions needed to
interpret the Drell-Yan data are less clear. For z < 0.05, the shadowing in
terms of the vector dominance model largely explains the data.

In the z > 0.3 region many new ideas have been employed to reproduce
the EMC-ratios: Q?-rescaling, z-rescaling, multi-quark clusters, and others.
With the present paper we want to study the degree to which the most
conventional nuclear physics — the fact that nucleons in nuclei are bound
— can account for the data. Only once this aspect is treated in the most
quantitative way can one hope to learn physics beyond it from the comparison
with the data.

In previous works, we have systematically studied inclusive electron-
nucleus cross sections in the region of the quasielastic peak, at values of Bjor-
ken z = Q?/2mv ~ 1, with Q% = |q? — +?, |q] being the three-momentum
transfer, v the electron energy loss and m the nucleon mass. These studies
[4]-{7] were performed for infinite nuclear matter, using cross sections obtai-
ned by extrapolating finite-nucleus data to mass number A= oo, and for light
nuclei {8]. For both infinite nuclear matter and light nuclei having A< 4 it is
possible to perform a quantitative calculation of the nucleon spectral function

P(|k|, E) starting from a realistic nucleon-nucleon interaction. The spectral
function describes the distribution of the nucleons in momentum and energy,
and contains the information on nucleons in both single-particle and corre-
lated states. The inclusive cross sections were calculated using Plane Wave
Impulse Approximation (PWIA) [9] for the description of scattering from
an initially bound nucleon. The effects of the nucleon-nucleus final state in-
teraction, important at very large ¢ where the impulse-approximation cross
section becomes very small, were treated using a generalization of Glauber
theory.

We have found that for both the nuclear matter cross sections and the
nuclear matter to deuteron cross section ratios most of the features of the
data can be quantitatively understood.

‘We recently extended [10] this approach to the study of nuclear matter
cross sections in the region 0.1 < z < 1. A quantitative description of the
dip in observed EMC ratios at z ~ 0.7 was obtained for nuclear matter when
using a realistic spectral function and the generalization of PWIA to the
scattering of electrons by bound nucleons. In the present paper we present
a derivation of the relation between the cross sections for free and bound
nucleons in the context of deep inelastic scattering, give additional details on
the calculations presented in [10], and provide new results for EMC ratios
for *He and 3He.

2 Formalism

Inclusive electron-nucleus scattering data at moderate Q? (1.5 ¢ Q*
3 (GeV/c)?) and z ~ 1 has been quantitatively accounted for [4]-[7]. At
z ~ 1 the PWIA is sufficient to account for the data, while at large z Final
State Interactions (FSI) are important. In this paper we extend the PWIA
treatment to the deep inelastic scattering region. The basic assumption un-
derlying this scheme is that, at large momentum transfer, scattering off a
nuclear target reduces to the incoherent sum of elementary scattering pro-
cesses off individual nucleons distributed according to the spectral function
P(|k|, E), and that the FSI of the debris from the struck nucleon with the
(A-1) nucleus can be neglected. The spectral function P(jk|, E) yields the
probability of finding a nucleon of momentum k in the target with the residual
system having an excitation energy E '. We use the four vectors k = (E, k)
to denote the energy/momentum of an off-shell nucleon in the nucleus, and
k = (Ei, k) with E; = vm? + k? to denote the energy/momentum for the

free nucleon.

Imore precisely, E is the removal energy given by the sum of the excitation energy
of the (A-1)-nucleon spectator system and the one-nucleon separation energy, plus (in a
finite system) the recoil energy



The differential cross section for inclusive scattering of electrons by a free
nucleon N (= n or p) of four-momentum k can be expressed as:

d¢ o Em _,, -
s = ¢ B, Bx L#(kiy k)W (k, q) (1)
where a is the fine structure constant, k; = (E;, ki) and k; = (Ey,ky)
are the initial and scattered electron four-momenta, respectively, the four-
momentum transfer is ¢ = k; — k; = (v,q) and the leptonic tensor L* is
fully specified by the measured kinematical variables (see e.g. ref.[11}).

The nucleon tensor is given by:

Wou(kg) = T [ @ox (N, KIIX, px) (X, Px AN, )8 (k4 q—px)S( Eutv—Ex)
X

(2)
where |N, k) and | X,px) are time independent representations of the initial
nucleon and final hadronic states, J,, are Schrédinger current operators, and
Eyx is the energy of the final state |X,px). Averaging over the spin states
of the initial nucleons is implicit. The tensor W,,, is defined with covariantly
normalized nucleon states |N,k}, and the factor m/E; in the cross section
restores the unit norm.

Our understanding of nucleon structure has not yet developed to the point
where W, (k, g) can be calculated; it is obtained by fitting experimental data.

We can similarly express the inclusive electron-nucleus cross section using
a nuclear tensor WA (q) in the lab frame:

W)= 3 [ @il A, )T, 4)5 a8 Ea +v =B, (3

where |A) is the nuclear ground state with zero momentum and energy E,4,
and |I,py) are all the possible final states with energies Er.

The assumptions of PWIA, illustrated in fig.1, imply that the final states
{I,p1) which contribute to WA have (A-1) residual nucleons with total mo-
mentum pg in a state denoted by |R, pr) and the struck nucleon in the final
state |X,px). Hence we can truncate the sum over I to:

Z/«f‘wll,p:)(f,pxl - Z/fpa &px|X,px; R, pr) (z,Px; R,prl.
I RX

(4)
PWIA also implies that the final state interactions between the debris of the
struck nucleon and the residual nucleus can be neglected. In this case the
matrix element of the current operator factorizes:

m
(Al X,px; R,pR) = <A|N:_PR;RyPR)ﬁEP_(N, —prlJu|X,px). (5)
R

4

Figure 1: Inclusive electron-nucleus scattering in PWIA.

Its first factor gives the amplitude to find in the ground state of the nucleus
the residual system in state |R, pr) and & nucleon in state |N, —pg) with unit

norm. The factor ‘/m/ Ep, takes into account the implicit covariant norm of
(N, —Ppr| in the matrix element of J,,. The spectral function is defined as:

P(k,E) = Y_ |{A|N,k; R, ~k)[*§(E4 — Er — E). (8)
R
Using equations (4) to (6) in eq. (3) gives the Wi (q) in PWIA:

. 2 (™
5 [ @oclA, -pr 2ol (72
E/dsPX(Ny—PRIJA|X,PX>(X1PX|J;|N, "pR>
X

§(q - px — pr) §(Es+v — Ex — En)
| @k dE P, E) (i,":) > [ @x(N,x12,1X,px)
(X,px|J,|N, k)6 (q+ k—px) S(E+v—Ex) (7)

W)

In order to relate the above W2, to the free nucleon tensor given by eq.(2)
we define:

v=FE -~ E;+v; i=(v,q). (8)
Note that ¥ is the energy transferred to the struck nucleon, the energy v—v =
Ey — E goes into the residual system. The energy conserving §-function in
€q.(7) then becomes §(Ex + ¥ — Ex), and the sum over X gives:
Wale) = [ & dE P(k,E) (3 ) Wiulk,d) (9)
k
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Equation (9) has also been written in the form:
m\ ~
W) = [ d% P) () Funli,a), (10)

where k is a 4-vector with ky = E and W, is the tensor for bound (off-
shell) nucleons for which k2 # m?. This is our basic equation, used in
refs.[4, 5, 7, 10] to calculate inclusive cross sections within PWIA.

In PWIA we have proved that:

Wil 0) = Wiallod) = W, (&,3-F) (g + i)

WY (@Nak) (- gk \(; k.
MGIR (_1h) (-E)

W) and W} being the nucleon structure functions that can be extracted
from the proton and deuteron data. The appearance of §, k (rather than g, k)
in the factors multiplying WV in eq.(11) is a direct consequence of PWIA and
Lorents invariance for the case of scattering from an off-shell nucleon. The
total four momentum of the hadronic final state |X,px) is k + § where & is
the on-shell four momentum of the struck nucleon. These factors are of great
importance for the understanding of inclusive electron-nucleus scattering.

Figure 2: FSI of the knocked out system with the residual
nucleus.

The above relations are not exact due to the use of PWIA. The two
leading corrections to PWIA, shown in figures 2 and 3, are due to FSI and
coherent contributions. At high energies and z > 1 the effect of FSI on
inclusive scattering cross sections has been estimated using the Correlated
Glauber Approximation (CGA) [4]. Since the FSI of high energy hadrons

Figure 3: Example of two-nucleon coherent contribution.

in nuclear matter is mainly absorptive, its effect can be accounted for by a
folding expression:
v &o(v

e L (R} 02
where the folding function F(rv — v') is related to the decay rate of the state
|X,px) in matter. This folding has significant consequences at large z where
the cross section varies rapidly with energy transfer v. However, in the z-
region of interest here, the cross section varies slowly with v and the effect
of FSI is expected to be negligible.

At large values of momentum transfer ¢ most of the coherent processes
with participation of more than one nucleon are expected to be negligible as
well. However, the process shown in fig.3 can contribute. It involves deep
inelastic scattering with a slow nucleon in the final state. Pion current con-
tributions, called "excess pion contributions” in the deep inelastic scattering
regime, are examples of such coherent contributions. They are expected to
become important at small z due to the small mass of the pions, and they
are responsible for a good part of the meson exchange contributions present
in observables such as the form factors of light nuclei at large momentum
transfer (12]. We will return to these pion contributions below.

Contraction of W,,, constructed according to the above procedure, with
the leptonic tensor L* leads to the standard expression for the inclusive
cross section:

d*o 8
e = ow W@ W@ )
where o is the Mott cross section
EN\* L0
—4a2 {24 27
oM = 4da (7) cos’s (14)
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0 being the electron scattering angle.
The nuclear structure functions are found to be:

wi@w) = [akri) (5)

[ Y (@3F) + g (@70 EE

| a9

and

WAQYY) = /d“k P(k) (%) {W,"(é’,a-k)"’ ;D)z wl(@%q k)

m2
v—v
7

;v\ 14 kxg?
) A ]} (16)

Notice that the standard Atwood-West [13] result can be recovered from the
above Wi, by sctting ¥ = v and k= k.

The nuclear tensor, obtained inserting W, of eq.(11) into eq.(10), does
not fulfill the gauge invariance requirement

Wi(g)=0, @an
implying in turn _
'Wu(k,q)=0. (18)

This failure is due to the approximations of PWIA is illustrated in figs.2 and
3. In order to gauge its importance we adopt a procedure originally proposed
by deForest when studying electron-nucleus scattering in the quasielastic
regime [9, 14]. The basic idea is to use eq.(11) to evaluate the time and
transverse components of W,,., only (i.e. using q = |q|Z for y,» = 0,1 and
2), whereas the longitudinal components are obtained from the continuity
equation (18), yielding

Woulkra) = (| ‘) WoulF,d) (19)
for v # 3 and
Wro(krg) = (, ‘) Woolr) - (20)

The nuclear structure functions appearing in eq.(13) then are found to
be:

wh@w) = [a% Pk ()
[ (Q E) 1W2N (ina' k) |k X qP] (21)

2 m lql?
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and

WAQv) = /d‘kP(k)( ){WN(Qz,q.i ’ (%;—1) (22)

Wi (@.3-F) _L(xo-;zi)’_zq_’lkqu’
m? lal* 7 2|q)* |qf?

It can be easily verified that the expression of the nuclear quasielastic cross
section of ref.[14] can be recovered by inserting in eqs.(21) and (22) the
appropriate nucleon structure functions:

N
.'5_|-a
]

WY Q") = -—G M(Q)§(W? — m?) (23)

and
wr<o’,u)=(——7[a*(o’)+ @ @] s -m),  (29)

where Gg and Gy are the electric and magnetic nucleon form factors.

This procedure to restore gauge invariance is somewhat ad hoc. In the
case of DIS, there are no strong theoretical arguments supporting the de-
Forest prescription. In principle, instead of defining the longitudinal com-
ponents of the nucleon tensor as in eqs.(19) and (20), one could have as
well used the continuity equation to obtain the charge components of W
from the longitudinal ones. However, about 80% of deep inelastic scatte-
ring is transverse, and hence unaffected by the deForest prescription. Our
numerical results, discussed below, show that the extra terms appearing in
€qs.(21,22) on account of the use of the deForest prescription contribute less
than 4% to the nuclear matter to deuteron structure function ratio in the
range 0.4 < z < 0.8, whereas the replacement of ¢ and k with § and k
produce the major effect of ~ 20% in magnitude.

The above equations are valid to describe electron-nucleus scattering at all
energies where PWIA is valid. In the case of the very high energies of interest
in the deep-inelastic region, one can use the Bjorken limit: Q?,v — oo with
z = Q?/2mv finite, implying v/|q| — 1 and ¢*/|q> — 0. In this limit
equation (22) simplifies considerably, the terms containing WY and k x qdo

not contribute,
2 - \2
@ (@ g (-3
i (b-7) -G )
and it becomes:

wi@t = [ p) (B)w (@R &, (26)

Ol] £
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Further using the conventional definitions:

B o= oW, (27)
k-3
B o= wy, (28)
2l
i = 5,?—q (29)
and noting that
Q? Sv
@ - 1+ ’1;;,
where v = v — U, we obtain, in the Bjorken limit:
4(¢7,2) - ™) (gL
Ff(Q%2) _/d‘k P(k) (E) FY(§%3) 2 Ty (0

Eq.(30) emphasizes that the binding effects do not go away even when q and
v become arbitrarily large. Eq.(30) shows that there is a Q%-independent
factor (1 4 v /mz) that occurs in the expression for F, and that there is a
rescaling of FY.

Over the past decade, a number of theoretical studies of nuclear effects
in deep inelastic scattering (for recent reviews see e.g. refs.[1, 2]) have been
carried out within the so called convolution model, occasionally also using
a realistic nuclear spectral function. It is therefore worthwhile to make a
connection, and point out the differences. This model assumes that the
nucleon tensor defined in eq.(11) can be approximated by replacing § and k
by ¢ and k. This gives:

FA@2) = [avr) (T) FY@#) (5) (31)

where 2’ = Q?/2(q- k). Equation (31) is totally equivalent to the standard
convolution approach expression of Fj!:

FA@e) = [ s faa) FY (@45 (32)
where

mv

£a(s) = = [ d'kP(k) (%) 5 (z - (_"—")) . (33)

It has to be noticed that f4(z) as given by eq.(33) includes the factor z in
front of the integral, a factor generally referred to as the "flux factor” (the

10

lack of which in some of the earlier calculations caused them to better agree
with the data), and fulfills the normalization requirement

[dz faa) =1 (34)

by construction, since the spectral function only depends upon the magnitude
of k and its normalization is

/ &PkdE P(k|,E)=1. (35)

The main difference between the convolution model and the approach
discussed in this work arises from the different treatment of nuclear binding

W
¢
(" +m) 2 K)
(m-EX)
e

Figure 4: Diagram depicting the conceptual split of the off-
shell scattering process into a transfer of energy required to
put the nucleon on-shell, and the subsequent on-shell DIS pro-
cess calculated using the known nucleon structure functions.

energy represented by §v. Upon setting §v = 0 and io,éz and Z respectively
to ko, @? and z’, our eq.(30) becomes identical to eq.(31). In the convolution
model, the év is associated with the initial energy of the struck particle and
eq.(11) is used with four-vectors ¢ and k to obtain the tensor for an off-
shell nucleon with k? # m?. This is an ad hoc and incorrect procedure. As
discussed earlier, within PWIA the tensor for the bound nucleon must be
calculated using the k and § four vectors. -

The nucleon structure functions in eq.(30) are evaluated at Q* which is
larger than Q? by a factor 1 + §v/mz. The average value of 1 + §v/mz
obtained from realistic spectral functions of nuclear matter ranges from ~
1.1 to 1.5 in the 2 = 1 to 0.2 range. In some Q? rescaling models [15, 16, 17}
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the convolution formula (31) is used with a scaled aQ? in place of the Q% in
the argument of W), In these models the observed magnitude of the dip
at z ~ 0.7 is not well reproduced when our scaling factor s = 1.25 for this
region is used [18]. Much larger scaling factors (s ~ 2) are needed to explain
the observed effect with only rescaling without convolution. Our eq.(30) has
an additional 1/(1 + §v/mz) factor, absent in the rescaling models, which
reduces the F} of nuclear matter significantly. This factor comes from using
k and § in the factors multiplying W in eq.(11).

The F} in eq.(30) are also evaluated at Z instead of the 2’ used in the
convolution model. We note that

k-q .17 vby
—-_é ~(1+ ;n—z)(l % -q)' (36)

It
AR
x

Y

We find the estimate /2’ = 1 + (1 — z)/mz, indicating an z-dependent
rescaling of z'.

3 Spectral functions

In order to address the nuclear properties relevant to DIS, we employ the
spectral function P(k|, E), which gives the probability to find in the nucleus
a nucleon of given momentum k and energy E. This spectral function can be
calculated starting from the nucleon-nucleon interaction for very light nuclei,
A< 4, and infinite nuclear matter [19].

The nuclear matter calculation has been performed using Correlated Ba-
sis Function (CBF) theory and the Urbana vi4 nucleon-nucleon interaction,
supplemented by the three-nucleon interaction (TNI) which accounts for the
neglect of non-nucleonic degrees of freedom and is needed to obtain the cor-
rect binding energies. P(|k|, E) contains the information on both the nuclear
mean field (at low |k|, E), and the short-range nucleon-nucleon correlations
(at high |k, E). The latter must be expected to contribute to processes such
as (e,¢’) at large |ql, which sample the nucleus with a spatial resolution of
order 1/|q|. A significant part of the influence of the nuclear medium there-
fore must be expected to depend on the short-range properties of the wave
function.

The calculated spectral function shows that only about 70% of the nucle-
ons are in the states of low |k| and low E that are described in a mean-field
theory. Some 30% of the nucleons are in a correlated state with another
nucleon, a correlation that mainly results from the one-pion exchange tensor
force and the short-range repulsion of the nucleon-nucleon interaction. These
correlations involve strength that is located both below and above the Fermi
momentum kg, and they give important contributions to the average remo-
val energy (61.9 MeV) and average kinetic energy (36.3 MeV). Although

12

the strength above kr amounts to only 14%, these nucleons give a contri-
bution of 23.3 MeV (17.0 MeV) to the average removal (kinetic) energy.
Note that the average value of §v equals the sum of the average values of
removal and kinetic energies. By Koltun’s sum rule [20] < §v > thus equals
-2 < v;; >, where < v;; > is the expectation value of the nucleon-nucleon
interaction potential in the nuclear ground state, neglecting the small TNI
contributions.

The spectral function of ‘He is obtained from many-body calculations
using the Argonne v;4 two-nucleon interaction and Urbana VII three-nucleon
interaction. It has been used in previous studies of inclusive scattering of GeV
electrons by *He in the z ~ 1 region, and its calculation is described in ref.[8].
The average values of the kinetic energy per nucleon and < év > in *He are
25 and 61 MeV, respectively.

4 Data

Data on inclusive scattering from infinite nuclear matter can be obtained
from finite-nucleus data by extrapolating the cross sections (or ratios) to mass
number A= oco. The nuclear property of interest in the case of the EMC effect
is a local one, as electron scattering at large |q| samples the nucleus with a
spatial resolution of order 1/|q|, at least as long as z is not too small. For such
observables one can employ the Local Density Approximation (LDA) which
starts from the assumption that the effect of the nuclear medium depends
only on the density near the interaction point.

For nuclei with A> 4 the nuclear density distribution p(r) is experimen-
tally found to be roughly constant in the nuclear interior. In the surface
region the shape of p(r — R), where R = rq - A!/? represents the half-density
radius, is essentially a universal function of r — R, independent of A. The
cross section then receives a contribution from the constant-density region
with volume proportional to A, and a contribution from the surface region
proportional to R?, i.e. A%3, It follows immediately that the cross section
per nucleon o/A is a linear function of A~1/3. The slope of this line con-
tains information about the density dependence of the cross section (ratio),
whereas the value of the intercept with the A~!/3=0 axis yields the nuclear
matter cross section.

In this context we want to point out that the often-used parameterization
of the data in terms of an ezponential A-dependence does not lead to a
sensible result in the limit A=oo, and contradicts the fact that the lepton
probe explores the nucleus with a spatial resolution of order 1/|q| — which
at large momentum transfer is small — in which case the nucleons far away
from the one hit cannot have an influence.

The A~'/3 extrapolation has first been performed for data in the quasi-

13



x= 0.60

1.00 R T T T
]
2 t
] Ri
3 4
%
13 —
"
n
1]
o
=
o
-
°© —
o 4
P
- 4
I
~
INM A= lB'7| 56 27 L 8 | 4
0.80 PRI PR PR N
0 0.2 0.4 0.8

Figure 5: Ratio of nuclear and deuteron response, extrapola-
ted as a function of A~'/3 to nuclear matter for z=0.6. Only
the statistical errors of the data are shown. Some of the values
of A of the data are indicated at the bottom. The point for
“He is not used, as the density p(r — R) in the surface region
for helium differs strongly from the one for nuclei with A>4.

elastic region (z ~ 1) where it turned out to be very successful. In ref.[21]
several tests performed on this much more extensive set of data have been
described.

For the present work we have extended the study of [22] for = < 1 by
analyzing todays world data on nucleus-to-deuteron cross section ratios [23)
~[35]. For A > 4 some 350 data points are available for the region z >
0.05 of interest here. As these ratios do not show any significant Q* depen-
dence, the data for all Q* and A>4 can be combined and extrapolated to
A~13=0 for any bin in z. The fits confirm that LDA is & valid approxima-
tion; the world data can be represented within the experimental uncertainties
with this linear A~!/3 dependence. An example for such an extrapolation is
shown in fig.5. The resulting nuclear matter-to-deuteron ratios, together
with the corresponding values of the slope, thus allow for a very concise re-
presentation of the world data for all nuclei. The uncertainties in the nuclear
matter-to-deuteron ratios are significantly smaller than for the ratios for in-
dividual nuclei, and a single curve contains the full experimental information
on nucleus-to-deuteron cross section ratios today available. The resulting
data for nuclear matter will be compared to theoretical predictions in figs.
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8, 10 and 11. The slopes of the A™'/3 fits, which contain some additional
information on the density dependence of the EMC-effect, will be exploited
in a different context [36].

The nuclear-matter to deuteron ratios represent all data for A > 4. As
discussed above, the data for very light nuclei are not included in the A=1/3
extrapolation as the surface thickness of their density strongly differs from
the one for the heavier nuclei. In order to also include the very light nuclei,
we will also show results for heium. While there are no experimental EMC-
ratios for 3He, data are available for *He. Both refs.[30, 37) have measured
cross section ratios between helium and the deuteron. These will be used
when comparing to our calculated results below.

5 Results

The deuteron and nuclear matter PWIA inclusive cross section in the deep
inelastic regime have been calculated from eqs.(13)-(16), using as inputs
theoretical spectral functions, and nucleon structure functions extracted from
the proton and deuteron data.

Fig.6 shows the deuteron structure function F(Q?,z) = vWJ(Q? z)asa

100 | 2..,
H B
Q%=10(GeV/c)? A
10-1 -
o E
=
® ]
o
g 4
(-]
= 107° E
- IR :
1073
0.2 0.4 0.6 0.8 1

Figure 6: Deuteron structure function at Q* ~ 10(GeV/c)?
compared to the data. The solid curve includes the quasiela-
stic contribution.

function of z resulting from our approach, together with the data of refs.[38,
30] at Q% ~ 10 (GeV/c)®. The calculation has been carried out using the
deuteron spectral function:

Py(k, E) = |®4(k)|* §(m + E4 ~ [k|*/2m ~ E) , (37)
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where E; = —2.23 MeV is the deuteron binding energy and the momentum-
space wave function ¥4(k) has been obtained solving the Schrddinger equa-
tion with the Urbana v14 interaction {39]. The nucleon structure functions
have been taken from ref.[40], where the proton and neutron W} have been
parameterized including both the resonance and the deep inelastic contribu-
tions. The corresponding W)¥ have then been obtained from

(1+5)
1+ Rpr(Q%,2) '

where Ryr(Q?2) = op/or is the measured ratio of the longitudinal (o1)
and transverse (o7) virtual photon absorption cross sections.

The calculated inelastic cross section, represented by the dashed line,
turns out to be in perfect agreement with the experiment over the range 0.3 <
z < 0.8, while discrepancies appear at larger =, where the theoretical curve
incrensingly lies below the data. This is due to the presence of nonnegligible
contributions from quasielastic scattering at large z. The solid line, obtained
by adding the quasielastic contributions evaluated from eq.(22) using the
spectral function of eq.(37) and the nucleon structure functions of eqs.(23)-
(24), reproduces the data up to the largest value of z (z = .968), where
quasielastic scattering accounts for ~ 35% of the measured cross section.

It has to be pointed out that even for A= 2 nuclear effects are not en-
tirely negligible. Scattering off the deuteron does not reduce to the sum of
scattering off two free nucleons at rest, as shown by the ratio

lpd'd
(&20, + d%,) '

WlN(inl’) = WzN(Qz!”) (38)

Ry(Q%2) = (39)
displayed in fig.7. The motion of the struck particles produces large (and
well-known) effects at z > 0.8. But even for z < 0.8 significant deviations
of Ry(Q?,2z) from unity are found. On the other hand, the effect of our
treatment of the nucleon tensor turns out to be small. Replacing g with ¢ in
qs.(21) and (22) leads to changes in the cross section of less than 1% over
the whole range 0.3 < z < 0.9.

The deuteron, helium and the nuclear matter cross sections are calculated
using eqs.(13)-(16) and include the quasi-clastic contribution. Fig.8 shows
the calculated nuclear matter to deuteron cross section ratios, compared to
the data. To provide an estimate for the theoretical uncertainty related to
the non-conservation of the electromagnetic current, we also show in fig.8 the
results using the deForest prescription (eqs.21,22, obtained by deriving Wa
from current conservation). This result is shown as a dashed line.

Fig. 8 also illustrates the relevance of the realistic treatment of the mo-
mentum and removal energy distribution of the struck nucleon. While the
dashed line represents the result obtained with the full spectral function of
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Figure 7: Ratio of deuteron DIS cross section to sum of proton
and neutron cross sections.

nuclear matter [19] and the nucleon structure functions of ref.[40], the dashed-
dot line has been obtained using the Fermi gas model spectral function:

3
Prg(kl|, E) = m—@(kp — kD)6(E-m—-«), (40)
where @
€ = 2_111 - Uo Y (41)

and the constant Uy (=53MeV) is fixed requiring €x, = —16 MeV. Compa-
rison between the dashed and dashed-dot curves clearly shows that using the
oversimplified spectral function of eq.(40), which corresponds to an assembly
of uncorrelated nucleons, underestimates the binding effect on the calculated
cross section ratio, thus resulting in a theoretical prediction that consistently
lies above the data over the range 0.3 < ¢ < 0.8. For the Fermi gas spectral
function < §v > = Us= 53 MeV. The rather small dip obtained with this
spectral function, as compared to that with the realistic spectral function,
for which < §v > = 98 MeV, suggests that the dip does not simply scale
with < v >.

The empirical binding energy, E; = —16MeV/A, and density, p = 0.16
fm=3 corresponding to the Fermi momentum kr = 1.33 fm~', of nuclear
matter provide a lower bound for < §v >. Using Koltun’s sum rule we
obtain < v >= -2 < v;; >=2 < T > —~2E; where < T >is the kinetic
energy per nucleon. Since < T >> 3k} /10m the Fermi gas kinetic energy
Sv > 6k} /10m — 2E, = 76MeV. In this context the above Fermi gas model
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Figure 8: Results for the nuclear matter to deuterium cross
section ratios, compared to the experimental data. The solid
line gives the full result, the dashed line gives the result obtai-
ned using the deForest prescription. The dashed-dot line gives
the ratio when replacing in addition the spectral function by
the Fermi-gas spectral function.

spectral function appears to be erroneous. Also note that the value j§v >=
98,eV obtained from the realistic spectral function is not far from the lower
bound.

In fig.9 we show our results for “‘He, and compare them to the available
data for this nucleus.

From figs.8 and 9 we conclude that our approach explains the ratio at
large z, in the region where this ratio has the pronounced dip. All previously
explored approaches, except the ones like the rescaling models which have a
free parameter to fit the data, always produced too small an effect in this
region.

6 Relation to other approaches

In a number of papers {15, 16], Q*-rescaling has been advocated as a means
to explain the EMC-effect. This rescaling idea is quite successful, although
the physical basis of the recipe is not so clear. In our description of deep
inelastic scattering, we naturally find some "rescaling” in terms of both z and
Q.

We have numerically studied the effect of the rescaling inherent to our
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Figure 9: Results for the *He to deuterium cross section ra-
tios, compared to the experimental data of {30, 37). The solid
line gives the full result including the pion contribution, the
dashed-dot and dashed lines give the result obtained using the
deForest prescription with and without excess pion contribu-
tions (see below).

treatment of deep inclastic scattering. The results obtained using the deFo-
rest prescription are shown in fig.10. The solid curve shows again the full
result obtained using eq.(30) valid in the Bjorken limit, which is very close
to the one obtained from eq.(22). The dashed curve corresponds to eq.(30)
but with Q replaced by Q. In the present approach the Q? rescaling factor of
~1.25 is quite small compared to the factor close to 2 as in [16] and results
from a physical model for the scattering process rather than an ad hoc recipe.

In fig.10 we also show the result obtained using eq.(30) with Q replaced by
Q end omitting the factor 1/(1 + §v/mz). This corresponds to the standard
convolution formula, but with Z rather than #'. The (1 + §v/mz) factor in
the denominator is primarily responsible for making the EMC ratio smaller
than one. As mentioned earlier, this factor basically comes from using k,§
in eq.(11) as required in the PWIA treatment of nuclear binding.

The dotted curve in fig.10 gives the ratio predicted by the standard con-
volution eq.(31). The difference between that and the dash-dot curve is due
to that between Z and z'.

An alternative to the standard convolution model has been also explored
in ref.{18] where the authors take into account the off-shellness of the struck
particle using a relativistic formalism. This approach, as ours, tries to deal

19



axu/9p

NEPEPENNS BN PRI BN IS

0 0.2 0.4 0.8 0.8 1
X

Figure 10: The solid curve gives our full result, the dashed
curve gives the result of eq.(30) with @ replaced by @. The
dotted curve corresponds to the standard convolution appro-
ximation, eq.(31). The dashdot curve corresponds to eq.(30),
with @ replaced by Q and the factor 1/(1 + 6v/mz) omitted.

with deep inelastic scattering from an off-shell nucleon by providing a physical
model that lets one ultimately use the measured on-shell structure functions
of the nucleon. The resulting alternative convolution formula then involves
the free space structure function FJ¥(Q?,z) evaluated at a shifted value of
the argument. The approach of ref.{18] provides a fairly good description of
the measured EMC ratios at z > 0.5, while the data at lower z are sizably
underestimated.

7 Contribution of pions

The comparison between our calculated results, shown in figs.8 and 9, and
the data shows that our calculation does not reproduce the data at the lower
values of z. This is to be expected. For very low z (2 < 0.1) the cross
section ratios exhibit the shadowing effects which are well explained in terms
of the vector dominance model [41] which contains additional physics not
addressed in the present paper. This region is thus outside of the scope
of the present work. For larger z-values the contribution of virtual pions,
present as a consequence of the pion-exchange nature of the nucleon-nucleon
force, is important. This pionic contribution is closely related to nuclear
binding, and will be briefly considered below.

We have not yet calculated the pionic contribution in a manner entirely
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consistent with the nucleonic contribution as discussed above. That will re-
quire knowledge of the removal spectral function of pions in nuclear matter,
which is not yet available. In order to gauge the effect of the pionic con-
tribution on the EMC ratio, we will simply add to our calculated nucleonic
EMC-effect the effect of pions as calculated by Berger et al.[42].

Berger et al. use the parton model to compute the nucleon structure
functions, from quark and antiquark densities determined by experiment [43].
For the pion they also use the (rather poorly known) experimental structure
function [44]; the results are quite insensitive, however, to the pion structure
function used. The pionic effect computed refers exclusively to the ezcess
pions associated with nuclear binding, and not the pionic densities associated
with the pion cloud of the isolated nucleon.

L B B B B S

14 =

12

oxu/

1.0

08 -

Figure 11: The full curve gives our result, supplemented by
the contribution of the pions as calculated by Berger et al,
scaled to the number of pions in nuclear matter as calculated
by Friman et al.. The dashed curve gives the same result, but
by using the deForest prescription.

The number of excess pions in nuclear matter and light nuclei has been
calculated in the static approximation by Friman et al.[45] starting from
the Argonne v;3 model for the nucleon-nucleon force. The ratio of excess
pions to nucleons in nuclear matter, *He, *He and deuteron is predicted
to be 0.18, 0.09, 0.05 and 0.024, respectively. The results of Berger et al.
for deep inelastic scattering from excess pions were computed for a ratio of
0.22. We scale them with the predicted values of the ratio to estimate the
excess pion contribution to deep inelastic scattering cross section. As can
be seen from figs.9,11, inclusion of the pionic contribution of Berger et al.
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clearly improves the agreement with the data, although, depending on the
treatment of W, a small difference remains. We estimate that the difference
between the two curves shown in fig.11 represents the theoretical uncertainty
in the treatment of current conservation. We intend to calculate the pionic
contribution with an approach consistent with the one employed here for the
nucleonic contribution in the future.

8 Results for 3He

Even though there are no data available for the EMC ratio of 3He, this
nucleus is often used as a polarized neutron target to study spin dependent
structure functions. We present here our predictions for the EMC ratio, to

provide an estimate of nuclear binding effects on deep inelastic scattering
from 3He.
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Figure 12: The full curve gives our result for *He calculated
using the spectral function for the Paris potential, the das-

hed line gives the result for the Argonne v14+4Urbana VII
interaction.

Fig.12 shows the ratios

dztfiﬂe

Bone = Gag, + #oy) (42)

obtained from spectral functions calculated by the Hannover group [46] with
the Paris potential [47] and from variational wave functions obtained from
Argonne vy, + Urbana VIl interactions [8]. As can be seen, Ray, has a rather
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weak model dependence, the difference between the solid and dashed curve
of Fig.12 being always less than 2.5% over the whole range of z. The more
pronounced dip exhibited by the dashed line, corresponding to the Argonne
vy4 potential, reflects the presence of stronger high momentum components
in the *He wave function, leading to an expectation value of the potential
energy < v;; >= —53.9 MeV [48], to be compared to the Paris potential
result < v;; >= —50.4 MeV [49]. Both curves in fig.12 include the excess
pion contribution.

9 Conclusions

In this paper, we have studied the EMC effect in the region of the Bjorken
scaling variable z > 0.1. We have investigated in detail the influence of the
binding of nucleons in nuclei, without considering any of the more "exotic”
effects discussed in the literature {1, 2. As compared to the many previous
theoretical studies of the EMC effect we have improved the treatment of
nuclear binding in two respects:

1. We have studied the EMC effect in infinite nuclear matter and ‘He
rather than the medium-A nuclei usually considered. For both infinite nuclear
matter and *He theoretical calculations of the wave function of high quality
can be performed, both for the long- and the short-range aspects of the
wave function. For a process of large momentum transfer — such as deep
inelastic scattering — the spatial resolution is very good. A reliable treatment
of the short-range properties of the wave function resulting from two-nucleon
correlations then is very important.

9. We have treated explicitly the off-shell nature of the nucleon on which
the DIS process occurs. This is necessary to achieve a well defined relation
between off- and on-shell DIS structure function of the nucleon, as only the
latter one is known experimentally.

The calculated values of the EMC ratios have been compared to the data
for helium and infinite nuclear matter. The latter have been determined from
the world-supply of data for finite nuclei, and the resulting nuclear matter
to deuteron-ratios thus incorporate all data on nucleus to deuteron-ratios
measured.

We find that a good theoretical description of nuclear binding including
the short-range properties is very important. Nuclear binding allows to quan-
titatively understand the cross section ratios at the larger z where the biggest
deviation of the cross section ratio from one occurs. At these larger z, no
effect beyond binding, and no model assumption involving free parameters,
are needed to understand the EMC ratios.

At the smaller values of z, the calculated ratios again agree well with
the data provided the contribution of excess pions, also related to nuclear
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binding, is taken into account. For an entirely consistent prediction of the
contribution of the excess pions, the pion removal spectral function will have
to be calculated.

Overall, the agreement between our parameter-free calculation and the
data is very good. From this agreement we conclude that the consequences of
nucleon binding explain the bulk of the EMC effect for > 0.1; no "exotic”
effects seem to be needed.
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